二次函数的解析式有三种形式

编辑时间: 2018-12-09 12:31:19     来源:速来学整理sulaixue.com

二次函数的解析式有三种形式

二次函数的解析式有三种形式:
 
  (1)一般式:
 
  (2)顶点式:
 
  (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
 
  注意:抛物线位置由决定。
 
  (1)决定抛物线的开口方向
 
  ①开口向上。
 
  ②开口向下。
 
  (2)决定抛物线与y轴交点的位置。
 
  ①图象与y轴交点在x轴上方。
 
  ②图象过原点。
 
  ③图象与y轴交点在x轴下方。
 
  (3)决定抛物线对称轴的位置(对称轴:)
 
  ①同号对称轴在y轴左侧。
 
  ②对称轴是y轴。
 
  ③异号对称轴在y轴右侧。
 
  (4)顶点坐标。
 
  (5)决定抛物线与x轴的交点情况。、
 
  ①△>0抛物线与x轴有两个不同交点。
 
  ②△=0抛物线与x轴有唯一的公共点(相切)。
 
  ③△<0抛物线与x轴无公共点。
 
  (6)二次函数是否具有最大、最小值由a判断。
 
  ①当a>0时,抛物线有最低点,函数有最小值。
 
  ②当a<0时,抛物线有最高点,函数有最大值。
 
  (7)的符号的判定:
 
  表达式,请代值,对应y值定正负;
 
  对称轴,用处多,三种式子相约;
 
  轴两侧判,左同右异中为0;
 
  1的两侧判,左同右异中为0;
 
  -1两侧判,左异右同中为0.
 
  (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
 
  (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
 
  (10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;
 
  ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
 
  ③二次函数(经过原点,则。
 
  (11)二次函数的解析式:
 
  ①一般式:(,用于已知三点。
 
  ②顶点式:,用于已知顶点坐标或最值或对称轴。
 
  (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。
 





速来学考试网(www.sulaixue.com)为您整理了“二次函数的解析式有三种形式”,更多相关文章请点击查看 ,因考试政策、内容不断变化与调整,速来学考试网sulaixue.com提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!

本文关键字:二次函数的解析式有三种形式


栏目导航返回首页
最新信息more>
推荐信息more>

热点信息
© © 2010-2026 速来学学习网版权所有 | 网站宗旨:好好学习,天天向上,做一个优秀的免费学习网站! | 声明:本站不收取任何费用 | 备案号:豫ICP备16002715号-5